A uniform-boundedness theorem for measures.

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computable Versions of the Uniform Boundedness Theorem

We investigate the computable content of the Uniform Boundedness Theorem and of the closely related Banach-Steinhaus Theorem. The Uniform Boundedness Theorem states that a pointwise bounded sequence of bounded linear operators on Banach spaces is also uniformly bounded. But, given the sequence, can we also effectively find the uniform bound? It turns out that the answer depends on how the seque...

متن کامل

The Decisional Diffie-Hellman Problem and the Uniform Boundedness Theorem∗

In this paper, we propose an algorithm to solve the Decisional Diffie-Hellman problem over finite fields, whose time complexity depends on the effective bound in the Uniform Boundedness Theorem (UBT). We show that curves which are defined over a number field of small degree but have a large torsion group over the number field have considerable cryptographic significance. If those curves exist a...

متن کامل

The Uniform Boundedness Theorem in Asymmetric Normed Spaces

and Applied Analysis 3 The condition of right K-completeness for X, p leaves outside the scope of this theorem an important class of asymmetric normed spaces, the asymmetric normed spaces associated to normed lattices because these spaces are right K-complete only for the trivial case 13 . In this paper, we give a uniform boundedness type theorem in the setting of asymmetric normed spaces which...

متن کامل

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Uniform Boundedness Principle

The following two propositions are true: (1) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim inf(r s1) = r · lim inf s1. (2) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim sup(r s1) = r · lim sup s1. Let X be a real Banach space. One can verify that MetricSpaceNormX is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 1972

ISSN: 0026-2285

DOI: 10.1307/mmj/1029000848